arXiv Analytics

Sign in

arXiv:1710.02275 [math.RT]AbstractReferencesReviewsResources

Universal two-parameter $\mathcal{W}_{\infty}$-algebra and vertex algebras of type $\mathcal{W}(2,3,\dots, N)$

Andrew R. Linshaw

Published 2017-10-06Version 1

We prove the longstanding physics conjecture that there exists a unique two-parameter $\mathcal{W}_{\infty}$-algebra which is freely generated of type $\mathcal{W}(2,3,\dots)$, and generated by the weights $2$ and $3$ fields. Subject to some mild constraints, all vertex algebras of type $\mathcal{W}(2,3,\dots, N)$ for some $N$ can be obtained as quotients of this universal algebra.

Comments: 52 pages, preliminary version, all comments welcome
Categories: math.RT, hep-th, math.QA
Related articles: Most relevant | Search more
arXiv:1805.11031 [math.RT] (Published 2018-05-25)
Universal two-parameter even spin $\mathcal{W}_{\infty}$-algebra
arXiv:1811.01577 [math.RT] (Published 2018-11-05)
Chiral algebras of class $\mathcal{S}$ and Moore-Tachikawa symplectic varieties
arXiv:2203.08188 [math.RT] (Published 2022-03-15)
Category $\mathcal O$ for vertex algebras of $\mathfrak{osp}_{1|2n}$