{ "id": "1710.02275", "version": "v1", "published": "2017-10-06T04:50:07.000Z", "updated": "2017-10-06T04:50:07.000Z", "title": "Universal two-parameter $\\mathcal{W}_{\\infty}$-algebra and vertex algebras of type $\\mathcal{W}(2,3,\\dots, N)$", "authors": [ "Andrew R. Linshaw" ], "comment": "52 pages, preliminary version, all comments welcome", "categories": [ "math.RT", "hep-th", "math.QA" ], "abstract": "We prove the longstanding physics conjecture that there exists a unique two-parameter $\\mathcal{W}_{\\infty}$-algebra which is freely generated of type $\\mathcal{W}(2,3,\\dots)$, and generated by the weights $2$ and $3$ fields. Subject to some mild constraints, all vertex algebras of type $\\mathcal{W}(2,3,\\dots, N)$ for some $N$ can be obtained as quotients of this universal algebra.", "revisions": [ { "version": "v1", "updated": "2017-10-06T04:50:07.000Z" } ], "analyses": { "keywords": [ "vertex algebras", "universal two-parameter", "mild constraints", "longstanding physics conjecture", "unique two-parameter" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable" } } }