arXiv Analytics

Sign in

arXiv:1709.09608 [math.FA]AbstractReferencesReviewsResources

Improved Moser-Trudinger type inequalities in the hyperbolic space $\mathbb H^n$

Van Hoang Nguyen

Published 2017-09-27Version 1

We establish an improved version of the Moser-Trudinger inequality in the hyperbolic space $\mathbb H^n$, $n\geq 2$. Namely, we prove the following result: for any $0 \leq \lambda < \left(\frac{n-1}n\right)^n$, then we have $$ \sup_{\substack{u\in C_0^\infty(\mathbb H^n)\\ \int_{\mathbb H^n} |\nabla_g u|_g^n d\text{Vol}_g -\lambda \int_{\mathbb H^n} |u|^n d\text{ Vol}_g \leq 1}} \int_{\mathbb H^n} \Phi_n(\alpha_n |u|^{\frac{n}{n-1}}) d\text{ Vol}_g < \infty, $$ where $\alpha_n = n \omega_{n-1}^{\frac1{n-1}}$, $\omega_{n-1}$ denotes the surface area of the unit sphere in $\mathbb R^n$ and $\Phi_n(t) = e^t -\sum_{j=0}^{n-2}\frac{t^j}{j!}$. This improves the Moser-Trudinger inequality in hyperbolic spaces obtained recently by Mancini and Sandeep, by Mancini, Sandeep and Tintarev and by Adimurthi and Tintarev. In the limiting case $\lambda =(\frac{n-1}n)^n$, we prove a Moser-Trudinger inequality with exact growth in $\mathbb H^n$, $$ \sup_{\substack{u\in C_0^\infty(\mathbb H^n)\\ \int_{\mathbb H^n} |\nabla_g u|_g^n d\text{ Vol}_g -(\frac{n-1}n)^n \int_{\mathbb H^n} |u|^n d\text{ Vol}_g \leq 1}} \frac{1}{\int_{\mathbb H^n} |u|^n d\text{ Vol}_g}\int_{\mathbb H^n} \frac{\Phi_n(\alpha_n |u|^{\frac{n}{n-1}})}{(1+ |u|)^{\frac n{n-1}}} d\text{ Vol}_g < \infty. $$ This improves the Moser-Trudinger inequality with exact growth in $\mathbb H^n$ established by Lu and Tang.

Comments: 14 pages, comment are welcome
Categories: math.FA, math.AP
Subjects: 26D10, 46E35
Related articles: Most relevant | Search more
arXiv:1702.07970 [math.FA] (Published 2017-02-26)
Extremal functions for the Moser--Trudinger inequality of Adimurthi--Druet type in $W^{1,N}(\mathbb R^N)$
arXiv:1805.02055 [math.FA] (Published 2018-05-05)
Second order Sobolev type inequalities in the hyperbolic spaces
arXiv:1708.03028 [math.FA] (Published 2017-08-09)
Improved Moser--Trudinger inequality for functions with mean value zero in $\mathbb R^n$ and its extremal functions