{ "id": "1709.09608", "version": "v1", "published": "2017-09-27T16:31:04.000Z", "updated": "2017-09-27T16:31:04.000Z", "title": "Improved Moser-Trudinger type inequalities in the hyperbolic space $\\mathbb H^n$", "authors": [ "Van Hoang Nguyen" ], "comment": "14 pages, comment are welcome", "categories": [ "math.FA", "math.AP" ], "abstract": "We establish an improved version of the Moser-Trudinger inequality in the hyperbolic space $\\mathbb H^n$, $n\\geq 2$. Namely, we prove the following result: for any $0 \\leq \\lambda < \\left(\\frac{n-1}n\\right)^n$, then we have $$ \\sup_{\\substack{u\\in C_0^\\infty(\\mathbb H^n)\\\\ \\int_{\\mathbb H^n} |\\nabla_g u|_g^n d\\text{Vol}_g -\\lambda \\int_{\\mathbb H^n} |u|^n d\\text{ Vol}_g \\leq 1}} \\int_{\\mathbb H^n} \\Phi_n(\\alpha_n |u|^{\\frac{n}{n-1}}) d\\text{ Vol}_g < \\infty, $$ where $\\alpha_n = n \\omega_{n-1}^{\\frac1{n-1}}$, $\\omega_{n-1}$ denotes the surface area of the unit sphere in $\\mathbb R^n$ and $\\Phi_n(t) = e^t -\\sum_{j=0}^{n-2}\\frac{t^j}{j!}$. This improves the Moser-Trudinger inequality in hyperbolic spaces obtained recently by Mancini and Sandeep, by Mancini, Sandeep and Tintarev and by Adimurthi and Tintarev. In the limiting case $\\lambda =(\\frac{n-1}n)^n$, we prove a Moser-Trudinger inequality with exact growth in $\\mathbb H^n$, $$ \\sup_{\\substack{u\\in C_0^\\infty(\\mathbb H^n)\\\\ \\int_{\\mathbb H^n} |\\nabla_g u|_g^n d\\text{ Vol}_g -(\\frac{n-1}n)^n \\int_{\\mathbb H^n} |u|^n d\\text{ Vol}_g \\leq 1}} \\frac{1}{\\int_{\\mathbb H^n} |u|^n d\\text{ Vol}_g}\\int_{\\mathbb H^n} \\frac{\\Phi_n(\\alpha_n |u|^{\\frac{n}{n-1}})}{(1+ |u|)^{\\frac n{n-1}}} d\\text{ Vol}_g < \\infty. $$ This improves the Moser-Trudinger inequality with exact growth in $\\mathbb H^n$ established by Lu and Tang.", "revisions": [ { "version": "v1", "updated": "2017-09-27T16:31:04.000Z" } ], "analyses": { "subjects": [ "26D10", "46E35" ], "keywords": [ "hyperbolic space", "moser-trudinger type inequalities", "moser-trudinger inequality", "exact growth", "unit sphere" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }