arXiv:1709.08207 [math.AP]AbstractReferencesReviewsResources
Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity
Vincenzo Ambrosio, Pietro d'Avenia
Published 2017-09-24Version 1
In this paper we focus our attention on the following nonlinear fractional Schr\"odinger equation with magnetic field \begin{equation*} \varepsilon^{2s}(-\Delta)_{A/\varepsilon}^{s}u+V(x)u=f(|u|^{2})u \quad \mbox{ in } \mathbb{R}^{N}, \end{equation*} where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $N\geq 3$, $(-\Delta)^{s}_{A}$ is the fractional magnetic Laplacian, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ and $A:\mathbb{R}^{N}\rightarrow \mathbb{R}^N$ are continuous potentials and $f:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a subcritical nonlinearity. By applying variational methods and Ljusternick-Schnirelmann theory, we prove existence and multiplicity of solutions for $\varepsilon$ small.