arXiv Analytics

Sign in

arXiv:1709.08207 [math.AP]AbstractReferencesReviewsResources

Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity

Vincenzo Ambrosio, Pietro d'Avenia

Published 2017-09-24Version 1

In this paper we focus our attention on the following nonlinear fractional Schr\"odinger equation with magnetic field \begin{equation*} \varepsilon^{2s}(-\Delta)_{A/\varepsilon}^{s}u+V(x)u=f(|u|^{2})u \quad \mbox{ in } \mathbb{R}^{N}, \end{equation*} where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $N\geq 3$, $(-\Delta)^{s}_{A}$ is the fractional magnetic Laplacian, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ and $A:\mathbb{R}^{N}\rightarrow \mathbb{R}^N$ are continuous potentials and $f:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a subcritical nonlinearity. By applying variational methods and Ljusternick-Schnirelmann theory, we prove existence and multiplicity of solutions for $\varepsilon$ small.

Related articles: Most relevant | Search more
arXiv:1606.08471 [math.AP] (Published 2016-06-27)
Fractional NLS equations with magnetic field, critical frequency and critical growth
arXiv:1510.04247 [math.AP] (Published 2015-10-14)
Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field
arXiv:2005.06714 [math.AP] (Published 2020-05-14)
A Semilinear Inverse Problem For The Fractional Magnetic Laplacian