{ "id": "1709.08207", "version": "v1", "published": "2017-09-24T15:15:07.000Z", "updated": "2017-09-24T15:15:07.000Z", "title": "Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity", "authors": [ "Vincenzo Ambrosio", "Pietro d'Avenia" ], "comment": "23 pages", "categories": [ "math.AP" ], "abstract": "In this paper we focus our attention on the following nonlinear fractional Schr\\\"odinger equation with magnetic field \\begin{equation*} \\varepsilon^{2s}(-\\Delta)_{A/\\varepsilon}^{s}u+V(x)u=f(|u|^{2})u \\quad \\mbox{ in } \\mathbb{R}^{N}, \\end{equation*} where $\\varepsilon>0$ is a parameter, $s\\in (0, 1)$, $N\\geq 3$, $(-\\Delta)^{s}_{A}$ is the fractional magnetic Laplacian, $V:\\mathbb{R}^{N}\\rightarrow \\mathbb{R}$ and $A:\\mathbb{R}^{N}\\rightarrow \\mathbb{R}^N$ are continuous potentials and $f:\\mathbb{R}^{N}\\rightarrow \\mathbb{R}$ is a subcritical nonlinearity. By applying variational methods and Ljusternick-Schnirelmann theory, we prove existence and multiplicity of solutions for $\\varepsilon$ small.", "revisions": [ { "version": "v1", "updated": "2017-09-24T15:15:07.000Z" } ], "analyses": { "subjects": [ "35A15", "35R11", "35S05", "58E05" ], "keywords": [ "nonlinear fractional magnetic schrödinger equation", "multiplicity", "fractional magnetic laplacian", "applying variational methods", "magnetic field" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }