arXiv:1709.08035 [math.DS]AbstractReferencesReviewsResources
On the density of intermediate β-shifts of finite type
Bing Li, Tuomas Sahlsten, Tony Samuel, Wolfgang Steiner
Published 2017-09-23Version 1
We determine the structure of the set of intermediate $\beta$-shifts of finite type. Specifically, we show that this set is dense in the parameter space $\Delta = \{ (\beta, \alpha) \in \mathbb{R}^{2} \colon \beta \in (1, 2) \; \text{and} \; 0 \leq \alpha \leq 2 - \beta\}$. This generalises the classical result of Parry from 1960 for greedy and (normalised) lazy $\beta$-shifts.
Comments: 6 pages
Related articles: Most relevant | Search more
Intermediate β-shifts of finite type
arXiv:1712.05340 [math.DS] (Published 2017-12-14)
Shifts of finite type and random substitutions
arXiv:1503.02050 [math.DS] (Published 2015-03-06)
Finite group extensions of shifts of finite type: K-theory, Parry and Livšic