{ "id": "1709.08035", "version": "v1", "published": "2017-09-23T10:58:40.000Z", "updated": "2017-09-23T10:58:40.000Z", "title": "On the density of intermediate β-shifts of finite type", "authors": [ "Bing Li", "Tuomas Sahlsten", "Tony Samuel", "Wolfgang Steiner" ], "comment": "6 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "We determine the structure of the set of intermediate $\\beta$-shifts of finite type. Specifically, we show that this set is dense in the parameter space $\\Delta = \\{ (\\beta, \\alpha) \\in \\mathbb{R}^{2} \\colon \\beta \\in (1, 2) \\; \\text{and} \\; 0 \\leq \\alpha \\leq 2 - \\beta\\}$. This generalises the classical result of Parry from 1960 for greedy and (normalised) lazy $\\beta$-shifts.", "revisions": [ { "version": "v1", "updated": "2017-09-23T10:58:40.000Z" } ], "analyses": { "subjects": [ "37E05", "37B10", "11A67", "11R06" ], "keywords": [ "finite type", "intermediate", "parameter space", "generalises" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }