arXiv:1708.04547 [math.FA]AbstractReferencesReviewsResources
A Refinement of the operator Kantorovich inequality
Published 2017-08-15Version 1
We show the following result: Let $A$ be a positive operator satisfying $0<m{{\mathbf{1}}_{\mathcal{H}}}\le A\le M{{\mathbf{1}}_{\mathcal{H}}}$ for some scalars $m,M$ with $m<M$ and $\Phi $ be a normalized positive linear map, then \[\Phi \left( {{A}^{-1}} \right)\le \Phi \left( {{m}^{\frac{A-M{{\mathbf{1}}_{\mathcal{H}}}}{M-m}}}{{M}^{\frac{m{{\mathbf{1}}_{\mathcal{H}}}-A}{M-m}}} \right)\le \frac{{{\left( M+m \right)}^{2}}}{4Mm}\Phi {{\left( A \right)}^{-1}}.\]
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1212.5690 [math.FA] (Published 2012-12-22)
On an operator Kantorovich inequality for positive linear maps
Refinements of the trace inequality of Belmega, Lasaulce and Debbah
arXiv:1512.07483 [math.FA] (Published 2015-12-23)
Growth rates and the peripheral spectrum of positive operators