arXiv Analytics

Sign in

arXiv:1212.5690 [math.FA]AbstractReferencesReviewsResources

On an operator Kantorovich inequality for positive linear maps

Minghua Lin

Published 2012-12-22Version 1

We improve the operator Kantorovich inequality as follows: Let $A$ be a positive operator on a Hilbert space with $0<m\le A \le M$. Then for every unital positive linear map $\Phi$, \[\Phi(A^{-1})^2\le (\frac{(M+m)^2}{4Mm})^2\Phi(A)^{-2}.\] As a consequence, \[\Phi(A^{-1})\Phi(A)+\Phi(A)\Phi(A^{-1}) \le \frac{(M+m)^2}{2Mm}.\]

Related articles: Most relevant | Search more
arXiv:1309.1219 [math.FA] (Published 2013-09-05, updated 2013-09-15)
Frames of subspaces in Hilbert spaces with $W$-metrics
arXiv:1211.2127 [math.FA] (Published 2012-11-06, updated 2014-06-11)
The splitting lemmas for nonsmooth functionals on Hilbert spaces I
arXiv:0708.1657 [math.FA] (Published 2007-08-13, updated 2008-04-30)
Some inequalities for $(α, β)$-normal operators in Hilbert spaces