arXiv Analytics

Sign in

arXiv:1708.02413 [math.AP]AbstractReferencesReviewsResources

Compactness properties and ground states for the affine Laplacian

Ian Schindler, Cyril Tintarev

Published 2017-08-08Version 1

The paper studies compactness properties of the affine Sobolev inequality of Gaoyong Zhang et al in the case $p=2$, and existence and regularity of related minimizers, in particular, solutions to the nonlocal Dirichlet problems \[ -\sum_{i,j=1}^{N}(A^{-1}[u])_{ij}\frac{\partial^2u}{\partial x_i\partial x_j}=f \mbox{ in }\Omega\subset\mathbb R^N, \] and \[ -\sum_{i,j=1}^{N}(A^{-1}[u])_{ij}\frac{\partial^2u}{\partial x_i\partial x_j}=u^{q-1}\,,\quad u>0,\mbox{ in }\Omega\subset\mathbb R^N, \] where $A_{ij}[u]=\int_\Omega\frac{\partial u}{\partial x_i}\frac{\partial u}{\partial x_j}\mathrm{d}x$ and $q\in(2,\frac{2N}{N-2})$.

Related articles: Most relevant | Search more
arXiv:0905.3105 [math.AP] (Published 2009-05-19)
Uniqueness of ground states for the L^2-critical boson star equation
arXiv:1803.05276 [math.AP] (Published 2018-03-14)
Existence of bound and ground states for fractional coupled systems in $\mathbb{R}^{N}$
arXiv:2306.04856 [math.AP] (Published 2023-06-08)
Ground states for aggregation-diffusion models on Cartan-Hadamard manifolds