{ "id": "1708.02413", "version": "v1", "published": "2017-08-08T09:09:19.000Z", "updated": "2017-08-08T09:09:19.000Z", "title": "Compactness properties and ground states for the affine Laplacian", "authors": [ "Ian Schindler", "Cyril Tintarev" ], "categories": [ "math.AP" ], "abstract": "The paper studies compactness properties of the affine Sobolev inequality of Gaoyong Zhang et al in the case $p=2$, and existence and regularity of related minimizers, in particular, solutions to the nonlocal Dirichlet problems \\[ -\\sum_{i,j=1}^{N}(A^{-1}[u])_{ij}\\frac{\\partial^2u}{\\partial x_i\\partial x_j}=f \\mbox{ in }\\Omega\\subset\\mathbb R^N, \\] and \\[ -\\sum_{i,j=1}^{N}(A^{-1}[u])_{ij}\\frac{\\partial^2u}{\\partial x_i\\partial x_j}=u^{q-1}\\,,\\quad u>0,\\mbox{ in }\\Omega\\subset\\mathbb R^N, \\] where $A_{ij}[u]=\\int_\\Omega\\frac{\\partial u}{\\partial x_i}\\frac{\\partial u}{\\partial x_j}\\mathrm{d}x$ and $q\\in(2,\\frac{2N}{N-2})$.", "revisions": [ { "version": "v1", "updated": "2017-08-08T09:09:19.000Z" } ], "analyses": { "subjects": [ "46E30", "46E35", "35J20", "35J99", "35H99" ], "keywords": [ "ground states", "affine laplacian", "paper studies compactness properties", "affine sobolev inequality", "nonlocal dirichlet problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }