arXiv:1707.08487 [math.CO]AbstractReferencesReviewsResources
A new family of MRD-codes
Bence Csajbók, Giuseppe Marino, Olga Polverino, Corrado Zanella
Published 2017-07-26Version 1
We introduce a family of linear sets of $\mathrm{PG}(1,q^{2n})$ arising from maximum scattered linear sets of pseudoregulus type of $\mathrm{PG}(3,q^{n})$. For $n=3,4$ and for certain values of the parameters we show that these linear sets of $\mathrm{PG}(1,q^{2n})$ are maximum scattered and they yield new MRD-codes with parameters $(6,6,q;5)$ for $q>2$ and with parameters $(8,8,q;7)$ for $q$ odd.
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:1709.00926 [math.CO] (Published 2017-09-04)
New maximum scattered linear sets of the projective line
arXiv:1906.05611 [math.CO] (Published 2019-06-13)
Vertex properties of maximum scattered linear sets of $\mathrm{PG}(1,q^n)$
arXiv:1910.02278 [math.CO] (Published 2019-10-05)
A new family of maximum scattered linear sets in $\mathrm{PG}(1,q^6)$