{ "id": "1707.08487", "version": "v1", "published": "2017-07-26T15:16:57.000Z", "updated": "2017-07-26T15:16:57.000Z", "title": "A new family of MRD-codes", "authors": [ "Bence Csajbók", "Giuseppe Marino", "Olga Polverino", "Corrado Zanella" ], "categories": [ "math.CO" ], "abstract": "We introduce a family of linear sets of $\\mathrm{PG}(1,q^{2n})$ arising from maximum scattered linear sets of pseudoregulus type of $\\mathrm{PG}(3,q^{n})$. For $n=3,4$ and for certain values of the parameters we show that these linear sets of $\\mathrm{PG}(1,q^{2n})$ are maximum scattered and they yield new MRD-codes with parameters $(6,6,q;5)$ for $q>2$ and with parameters $(8,8,q;7)$ for $q$ odd.", "revisions": [ { "version": "v1", "updated": "2017-07-26T15:16:57.000Z" } ], "analyses": { "subjects": [ "51E20", "05B25", "51E22" ], "keywords": [ "parameters", "maximum scattered linear sets", "pseudoregulus type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }