arXiv:1707.04436 [math.RT]AbstractReferencesReviewsResources
Classification of Klein Four Symmetric Pairs of Holomorphic Type for $\mathrm{E}_{6(-14)}$
Published 2017-07-14Version 1
The author classifies Klein four symmetric pairs of holomorphic type for non-compact Lie group $\mathrm{E}_{6(-14)}$, which gives a class of pairs $(G,G')$ of real reductive Lie group $G$ and its reductive subgroup $G'$ such that there exist irreducible unitary representations $\pi$ of $G$, which are admissible upon restriction to $G'$.
Comments: 11 pages, 1 figure
Related articles: Most relevant | Search more
arXiv:1804.04004 [math.RT] (Published 2018-04-10)
Classification of Klein Four Symmetric Pairs of Holomorphic Type for $\mathrm{E}_{7(-25)}$
arXiv:1508.07203 [math.RT] (Published 2015-08-28)
The classification of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules
arXiv:0904.1318 [math.RT] (Published 2009-04-08)
Classification of simple q_2-supermodules