arXiv Analytics

Sign in

arXiv:1705.09621 [math.RT]AbstractReferencesReviewsResources

Duality and Serre functor in homotopy categories

J. Asadollahi, N. Asadollahi, R. Hafezi, R. Vahed

Published 2017-05-25Version 1

For a (right and left) coherent ring $A$, we show that there exists a duality between homotopy categories ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A^{{\rm op}})$ and ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A)$. If $A=\Lambda$ is an artin algebra of finite global dimension, this duality restricts to a duality between their subcategories of acyclic complexes, ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda^{\rm op})$ and ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda).$ As a result, it will be shown that, in this case, ${\mathbb{K}}_{\rm ac}^{{\rm{b}}}({\rm mod}{\mbox{-}}\Lambda)$ admits a Serre functor and hence has Auslander-Reiten triangles.

Comments: arXiv admin note: text overlap with arXiv:1605.04745
Categories: math.RT
Subjects: 18E30, 16E35, 18G25
Related articles: Most relevant | Search more
arXiv:1704.00398 [math.RT] (Published 2017-04-03)
Examples of finite dimensional algebras which do not satisfy the derived Jordan--Hölder property
arXiv:1505.03547 [math.RT] (Published 2015-05-13)
Artin algebras of finite type and finite categories of $Δ$-good modules
arXiv:1110.6734 [math.RT] (Published 2011-10-31, updated 2012-02-28)
Morphisms determined by objects: The case of modules over artin algebras