arXiv:1705.09621 [math.RT]AbstractReferencesReviewsResources
Duality and Serre functor in homotopy categories
J. Asadollahi, N. Asadollahi, R. Hafezi, R. Vahed
Published 2017-05-25Version 1
For a (right and left) coherent ring $A$, we show that there exists a duality between homotopy categories ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A^{{\rm op}})$ and ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A)$. If $A=\Lambda$ is an artin algebra of finite global dimension, this duality restricts to a duality between their subcategories of acyclic complexes, ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda^{\rm op})$ and ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda).$ As a result, it will be shown that, in this case, ${\mathbb{K}}_{\rm ac}^{{\rm{b}}}({\rm mod}{\mbox{-}}\Lambda)$ admits a Serre functor and hence has Auslander-Reiten triangles.