{ "id": "1705.09621", "version": "v1", "published": "2017-05-25T13:55:21.000Z", "updated": "2017-05-25T13:55:21.000Z", "title": "Duality and Serre functor in homotopy categories", "authors": [ "J. Asadollahi", "N. Asadollahi", "R. Hafezi", "R. Vahed" ], "comment": "arXiv admin note: text overlap with arXiv:1605.04745", "categories": [ "math.RT" ], "abstract": "For a (right and left) coherent ring $A$, we show that there exists a duality between homotopy categories ${\\mathbb{K}}^{{\\rm{b}}}({\\rm mod}{\\mbox{-}}A^{{\\rm op}})$ and ${\\mathbb{K}}^{{\\rm{b}}}({\\rm mod}{\\mbox{-}}A)$. If $A=\\Lambda$ is an artin algebra of finite global dimension, this duality restricts to a duality between their subcategories of acyclic complexes, ${\\mathbb{K}}^{{\\rm{b}}}_{\\rm ac}({\\rm mod}{\\mbox{-}}\\Lambda^{\\rm op})$ and ${\\mathbb{K}}^{{\\rm{b}}}_{\\rm ac}({\\rm mod}{\\mbox{-}}\\Lambda).$ As a result, it will be shown that, in this case, ${\\mathbb{K}}_{\\rm ac}^{{\\rm{b}}}({\\rm mod}{\\mbox{-}}\\Lambda)$ admits a Serre functor and hence has Auslander-Reiten triangles.", "revisions": [ { "version": "v1", "updated": "2017-05-25T13:55:21.000Z" } ], "analyses": { "subjects": [ "18E30", "16E35", "18G25" ], "keywords": [ "serre functor", "homotopy categories", "finite global dimension", "duality restricts", "artin algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }