arXiv Analytics

Sign in

arXiv:1705.01243 [math.AP]AbstractReferencesReviewsResources

An $L_p$-theory for diffusion equations related to stochastic processes with non-stationary independent increment

Ildoo Kim, Kyeong-Hun Kim, Panki Kim

Published 2017-05-03Version 1

Let $X=(X_t)_{t \ge 0}$ be a stochastic process which has an (not necessarily stationary) independent increment on a probability space $(\Omega, \mathbb{P})$. In this paper, we study the following Cauchy problem related to the stochastic process $X$: \label{main eqn} \frac{\partial u}{\partial t}(t,x) = \cA(t)u(t,x) +f(t,x), \quad u(0,\cdot)=0, \quad (t,x) \in (0,T) \times \mathbf{R}^d, \end{align} where $f \in L_p( (0,T) ; L_p(\mathbf{R}^d))=L_p( (0,T) ; L_p)$ and \begin{align*} \cA(t)u(t,x) = \lim_{h \downarrow 0}\frac{\mathbb{E}\left[u(t,x+X_{t+h}-X_t)-u(t,x)\right]}{h}. We provide a sufficient condition on $X$ to guarantee the unique solvability of equation (\ref{ab main}) in $L_p\left( [0,T] ; H^\phi_{p}\right)$, where $H^\phi_{p}$ is a $\phi$-potential space on $\mathbf{R}^d$ . Furthemore we show that for this solution, \| u\|_{L_p\left( [0,T] ; H^\phi_{p}\right)} \leq N \|f\|_{L_p\left( [0,T] ; L_p\right)}, where $N$ is independent of $u$ and $f$.

Related articles: Most relevant | Search more
arXiv:1104.3794 [math.AP] (Published 2011-04-19, updated 2012-10-07)
The Cauchy Problem for Wave Maps on a Curved Background
arXiv:math/0607458 [math.AP] (Published 2006-07-19, updated 2008-01-12)
On well-posedness of the Cauchy problem for MHD system in Besov spaces
arXiv:math/0501408 [math.AP] (Published 2005-01-24, updated 2005-10-24)
The Cauchy problem for a Schroedinger - Korteweg - de Vries system with rough data