{ "id": "1705.01243", "version": "v1", "published": "2017-05-03T03:13:17.000Z", "updated": "2017-05-03T03:13:17.000Z", "title": "An $L_p$-theory for diffusion equations related to stochastic processes with non-stationary independent increment", "authors": [ "Ildoo Kim", "Kyeong-Hun Kim", "Panki Kim" ], "categories": [ "math.AP" ], "abstract": "Let $X=(X_t)_{t \\ge 0}$ be a stochastic process which has an (not necessarily stationary) independent increment on a probability space $(\\Omega, \\mathbb{P})$. In this paper, we study the following Cauchy problem related to the stochastic process $X$: \\label{main eqn} \\frac{\\partial u}{\\partial t}(t,x) = \\cA(t)u(t,x) +f(t,x), \\quad u(0,\\cdot)=0, \\quad (t,x) \\in (0,T) \\times \\mathbf{R}^d, \\end{align} where $f \\in L_p( (0,T) ; L_p(\\mathbf{R}^d))=L_p( (0,T) ; L_p)$ and \\begin{align*} \\cA(t)u(t,x) = \\lim_{h \\downarrow 0}\\frac{\\mathbb{E}\\left[u(t,x+X_{t+h}-X_t)-u(t,x)\\right]}{h}. We provide a sufficient condition on $X$ to guarantee the unique solvability of equation (\\ref{ab main}) in $L_p\\left( [0,T] ; H^\\phi_{p}\\right)$, where $H^\\phi_{p}$ is a $\\phi$-potential space on $\\mathbf{R}^d$ . Furthemore we show that for this solution, \\| u\\|_{L_p\\left( [0,T] ; H^\\phi_{p}\\right)} \\leq N \\|f\\|_{L_p\\left( [0,T] ; L_p\\right)}, where $N$ is independent of $u$ and $f$.", "revisions": [ { "version": "v1", "updated": "2017-05-03T03:13:17.000Z" } ], "analyses": { "keywords": [ "stochastic process", "non-stationary independent increment", "diffusion equations", "cauchy problem", "sufficient condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }