arXiv:1704.06957 [math.AG]AbstractReferencesReviewsResources
Entropy of an autoequivalence on Calabi-Yau manifolds
Published 2017-04-23Version 1
We prove that the categorical entropy of the autoequivalence $T_{\mathcal{O}}\circ(-\otimes\mathcal{O}(-1))$ on a Calabi-Yau manifold is the unique positive real number $\lambda$ satisfying $$ \sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{e^{k\lambda}}=e^{(d-1)t}. $$ We then use this result to construct the first counterexamples of a conjecture on categorical entropy by Kikuta and Takahashi.
Comments: 9 pages. Comments are welcome!
Related articles: Most relevant | Search more
arXiv:1809.05452 [math.AG] (Published 2018-09-14)
BCOV invariants of Calabi--Yau manifolds and degenerations of Hodge structures
arXiv:1412.7738 [math.AG] (Published 2014-12-24)
Yang-Mills-Higgs connections on Calabi-Yau manifolds
arXiv:1711.00846 [math.AG] (Published 2017-11-02)
Autoequivalences of twisted K3 surfaces