{ "id": "1704.06957", "version": "v1", "published": "2017-04-23T18:24:50.000Z", "updated": "2017-04-23T18:24:50.000Z", "title": "Entropy of an autoequivalence on Calabi-Yau manifolds", "authors": [ "Yu-Wei Fan" ], "comment": "9 pages. Comments are welcome!", "categories": [ "math.AG", "math.DS" ], "abstract": "We prove that the categorical entropy of the autoequivalence $T_{\\mathcal{O}}\\circ(-\\otimes\\mathcal{O}(-1))$ on a Calabi-Yau manifold is the unique positive real number $\\lambda$ satisfying $$ \\sum_{k\\geq 1}\\frac{\\chi(\\mathcal{O}(k))}{e^{k\\lambda}}=e^{(d-1)t}. $$ We then use this result to construct the first counterexamples of a conjecture on categorical entropy by Kikuta and Takahashi.", "revisions": [ { "version": "v1", "updated": "2017-04-23T18:24:50.000Z" } ], "analyses": { "subjects": [ "14F05", "14J32", "18E30" ], "keywords": [ "calabi-yau manifold", "autoequivalence", "categorical entropy", "unique positive real number", "first counterexamples" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }