arXiv Analytics

Sign in

arXiv:1704.01317 [math.DS]AbstractReferencesReviewsResources

The exceptional sets on the run-length function of beta-expansions

Lixuan Zheng, Min Wu, Bing Li

Published 2017-04-05Version 1

Let $\beta > 1$ and the run-length function $r_n(x,\beta)$ be the maximal length of consecutive zeros amongst the first n digits in the $\beta$-expansion of $x\in[0,1]$. The exceptional set $$E_{\max}^{\varphi}=\left\{x \in [0,1]:\liminf_{n\rightarrow \infty}\frac{r_n(x,\beta)}{\varphi(n)}=0, \limsup_{n\rightarrow \infty}\frac{r_n(x,\beta)}{\varphi(n)}=+\infty\right\}$$ is investigated, where $\varphi: \mathbb{N} \rightarrow \mathbb{R}^+$ is a monotonically increasing function with $\lim\limits_{n\rightarrow \infty }\varphi(n)=+\infty$. We prove that the set $E_{\max}^{\varphi}$ is either empty or of full Hausdorff dimension and residual in $[0,1]$ according to the increasing rate of $\varphi$ .

Related articles: Most relevant | Search more
arXiv:1805.04744 [math.DS] (Published 2018-05-12)
Level sets of the run-length function of beta-expansions
arXiv:1307.2091 [math.DS] (Published 2013-07-08)
Sets of beta-expansions and the Hausdorff Measure of Slices through Fractals
arXiv:1807.04523 [math.DS] (Published 2018-07-12)
Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems