{ "id": "1704.01317", "version": "v1", "published": "2017-04-05T09:19:38.000Z", "updated": "2017-04-05T09:19:38.000Z", "title": "The exceptional sets on the run-length function of beta-expansions", "authors": [ "Lixuan Zheng", "Min Wu", "Bing Li" ], "comment": "18 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "Let $\\beta > 1$ and the run-length function $r_n(x,\\beta)$ be the maximal length of consecutive zeros amongst the first n digits in the $\\beta$-expansion of $x\\in[0,1]$. The exceptional set $$E_{\\max}^{\\varphi}=\\left\\{x \\in [0,1]:\\liminf_{n\\rightarrow \\infty}\\frac{r_n(x,\\beta)}{\\varphi(n)}=0, \\limsup_{n\\rightarrow \\infty}\\frac{r_n(x,\\beta)}{\\varphi(n)}=+\\infty\\right\\}$$ is investigated, where $\\varphi: \\mathbb{N} \\rightarrow \\mathbb{R}^+$ is a monotonically increasing function with $\\lim\\limits_{n\\rightarrow \\infty }\\varphi(n)=+\\infty$. We prove that the set $E_{\\max}^{\\varphi}$ is either empty or of full Hausdorff dimension and residual in $[0,1]$ according to the increasing rate of $\\varphi$ .", "revisions": [ { "version": "v1", "updated": "2017-04-05T09:19:38.000Z" } ], "analyses": { "subjects": [ "11K55", "28A80" ], "keywords": [ "exceptional set", "run-length function", "beta-expansions", "full hausdorff dimension", "maximal length" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }