arXiv Analytics

Sign in

arXiv:1703.08128 [math.FA]AbstractReferencesReviewsResources

Schur multipliers on $\mathcal{B}(L^p,L^q)$

Clément Coine

Published 2017-03-23Version 1

Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces and let $1 \leq p,q \leq +\infty$. We give a definition of Schur multipliers on $\mathcal{B}(L^p(\Omega_1), L^q(\Omega_2))$ which extends the definition of classical Schur multipliers on $\mathcal{B}(\ell_p,\ell_q)$. Our main result is a characterization of Schur multipliers in the case $1\leq q \leq p \leq +\infty$. When $1 < q \leq p < +\infty$, $\phi \in L^{\infty}(\Omega_1 \times \Omega_2)$ is a Schur multiplier on $\mathcal{B}(L^p(\Omega_1), L^q(\Omega_2))$ if and only if there are a measure space (a probability space when $p\neq q$) $(\Omega,\mu)$, $a\in L^{\infty}(\mu_1, L^{p}(\mu))$ and $b\in L^{\infty}(\mu_2, L^{q'}(\mu))$ such that, for almost every $(s,t) \in \Omega_1 \times \Omega_2$, $$\phi(s,t)=\left\langle a(s), b(t) \right\rangle.$$ Here, $L^{\infty}(\mu_1, L^{r}(\mu))$ denotes the Bochner space on $\Omega_1$ valued in $L^r(\mu)$. This result is new, even in the classical case. As a consequence, we give new inclusion relationships between the spaces of Schur multipliers on $\mathcal{B}(\ell_p,\ell_q)$.

Related articles: Most relevant | Search more
arXiv:2010.08192 [math.FA] (Published 2020-10-16)
On a question of Pietch
arXiv:1902.06826 [math.FA] (Published 2019-02-18)
Row contractions annihilated by interpolating vanishing ideals
arXiv:2104.05461 [math.FA] (Published 2021-04-12)
Interpolating sequences for the Banach algebras generated by a class of test functions