{ "id": "1703.08128", "version": "v1", "published": "2017-03-23T16:17:27.000Z", "updated": "2017-03-23T16:17:27.000Z", "title": "Schur multipliers on $\\mathcal{B}(L^p,L^q)$", "authors": [ "Clément Coine" ], "comment": "25 pages", "categories": [ "math.FA" ], "abstract": "Let $(\\Omega_1, \\mathcal{F}_1, \\mu_1)$ and $(\\Omega_2, \\mathcal{F}_2, \\mu_2)$ be two measure spaces and let $1 \\leq p,q \\leq +\\infty$. We give a definition of Schur multipliers on $\\mathcal{B}(L^p(\\Omega_1), L^q(\\Omega_2))$ which extends the definition of classical Schur multipliers on $\\mathcal{B}(\\ell_p,\\ell_q)$. Our main result is a characterization of Schur multipliers in the case $1\\leq q \\leq p \\leq +\\infty$. When $1 < q \\leq p < +\\infty$, $\\phi \\in L^{\\infty}(\\Omega_1 \\times \\Omega_2)$ is a Schur multiplier on $\\mathcal{B}(L^p(\\Omega_1), L^q(\\Omega_2))$ if and only if there are a measure space (a probability space when $p\\neq q$) $(\\Omega,\\mu)$, $a\\in L^{\\infty}(\\mu_1, L^{p}(\\mu))$ and $b\\in L^{\\infty}(\\mu_2, L^{q'}(\\mu))$ such that, for almost every $(s,t) \\in \\Omega_1 \\times \\Omega_2$, $$\\phi(s,t)=\\left\\langle a(s), b(t) \\right\\rangle.$$ Here, $L^{\\infty}(\\mu_1, L^{r}(\\mu))$ denotes the Bochner space on $\\Omega_1$ valued in $L^r(\\mu)$. This result is new, even in the classical case. As a consequence, we give new inclusion relationships between the spaces of Schur multipliers on $\\mathcal{B}(\\ell_p,\\ell_q)$.", "revisions": [ { "version": "v1", "updated": "2017-03-23T16:17:27.000Z" } ], "analyses": { "keywords": [ "measure space", "main result", "classical schur multipliers", "inclusion relationships", "probability space" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }