arXiv Analytics

Sign in

arXiv:1703.06401 [math.NT]AbstractReferencesReviewsResources

On some combinatorial identities and harmonic sums

Necdet Batir

Published 2017-03-19Version 1

For any $m,n\in\mathbb{N}$ we first give new proofs for the following well known combinatorial identities \begin{equation*} S_n(m)=\sum\limits_{k=1}^n\binom{n}{k}\frac{(-1)^{k-1}}{k^m}=\sum\limits_{n\geq r_1\geq r_2\geq...\geq r_m\geq 1}\frac{1}{r_1r_2\cdots r_m} \end{equation*} and $$ \sum\limits_{k=1}^n(-1)^{n-k}\binom{n}{k}k^n = n!, $$ and then we produce the generating function and an integral representation for $S_n(m)$. Using them we evaluate many interesting finite and infinite harmonic sums in closed form. For example, we show that $$ \zeta(3)=\frac{1}{9}\sum\limits_{n=1}^\infty\frac{H_n^3+3H_nH_n^{(2)}+2H_n^{(3)}}{2^n}, $$ and $$ \zeta(5)=\frac{2}{45}\sum\limits_{n=1}^{\infty}\frac{H_n^4+6H_n^2H_n^{(2)}+8H_nH_n^{(3)}+3\left(H_n^{(2)}\right)^2+6H_n^{(4)}}{n2^n}, $$ where $H_n^{(i)}$ are generalized harmonic numbers defined below.

Related articles: Most relevant | Search more
arXiv:1702.05004 [math.NT] (Published 2017-02-16)
Integral representation and critical $L$-values for holomorphic forms on $GSp_{2n} \times GL_1$
arXiv:0908.1611 [math.NT] (Published 2009-08-12)
Integral representation for L-functions for GSp(4) x GL(2), II
arXiv:2406.18968 [math.NT] (Published 2024-06-27)
Integral Representation for Riemann-Siegel $Z(t)$ function