{ "id": "1703.06401", "version": "v1", "published": "2017-03-19T08:44:54.000Z", "updated": "2017-03-19T08:44:54.000Z", "title": "On some combinatorial identities and harmonic sums", "authors": [ "Necdet Batir" ], "comment": "to appear in Int. J. Number Theory, 2017", "doi": "10.1142/S179304211750097X", "categories": [ "math.NT" ], "abstract": "For any $m,n\\in\\mathbb{N}$ we first give new proofs for the following well known combinatorial identities \\begin{equation*} S_n(m)=\\sum\\limits_{k=1}^n\\binom{n}{k}\\frac{(-1)^{k-1}}{k^m}=\\sum\\limits_{n\\geq r_1\\geq r_2\\geq...\\geq r_m\\geq 1}\\frac{1}{r_1r_2\\cdots r_m} \\end{equation*} and $$ \\sum\\limits_{k=1}^n(-1)^{n-k}\\binom{n}{k}k^n = n!, $$ and then we produce the generating function and an integral representation for $S_n(m)$. Using them we evaluate many interesting finite and infinite harmonic sums in closed form. For example, we show that $$ \\zeta(3)=\\frac{1}{9}\\sum\\limits_{n=1}^\\infty\\frac{H_n^3+3H_nH_n^{(2)}+2H_n^{(3)}}{2^n}, $$ and $$ \\zeta(5)=\\frac{2}{45}\\sum\\limits_{n=1}^{\\infty}\\frac{H_n^4+6H_n^2H_n^{(2)}+8H_nH_n^{(3)}+3\\left(H_n^{(2)}\\right)^2+6H_n^{(4)}}{n2^n}, $$ where $H_n^{(i)}$ are generalized harmonic numbers defined below.", "revisions": [ { "version": "v1", "updated": "2017-03-19T08:44:54.000Z" } ], "analyses": { "subjects": [ "05A10" ], "keywords": [ "combinatorial identities", "infinite harmonic sums", "generalized harmonic numbers", "integral representation", "interesting finite" ], "tags": [ "journal article" ], "publication": { "publisher": "World Scientific" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }