arXiv Analytics

Sign in

arXiv:1702.08532 [math.AP]AbstractReferencesReviewsResources

Stochastic homogenization of maximal monotone relations and applications

Luca Lussardi, Stefano Marini, Marco Veneroni

Published 2017-02-27Version 1

We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.

Related articles: Most relevant | Search more
arXiv:1207.6375 [math.AP] (Published 2012-07-26, updated 2012-07-30)
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:1209.0483 [math.AP] (Published 2012-09-03, updated 2013-10-19)
Applications of Fourier analysis in homogenization of Dirichlet problem II. $L^p$ estimates