{ "id": "1702.08532", "version": "v1", "published": "2017-02-27T21:12:59.000Z", "updated": "2017-02-27T21:12:59.000Z", "title": "Stochastic homogenization of maximal monotone relations and applications", "authors": [ "Luca Lussardi", "Stefano Marini", "Marco Veneroni" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.", "revisions": [ { "version": "v1", "updated": "2017-02-27T21:12:59.000Z" } ], "analyses": { "subjects": [ "35B27", "47H05", "49J40", "74B20", "74Q15", "78M40" ], "keywords": [ "maximal monotone relations", "stochastic homogenization", "stationary random maximal monotone operator", "applications", "visintins scale integration/disintegration theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }