arXiv Analytics

Sign in

arXiv:1702.08364 [math.AG]AbstractReferencesReviewsResources

The full automorphism group of $\overline{T}$

Indranil Biswas, Subramaniam Senthamarai Kannan, Donihakalu Shankar Nagaraj

Published 2017-02-27Version 1

Let $\overline G$ be the wonderful compactification of a simple affine algebraic group $G$ of adjoint type defined over $\mathbb C.$ Let ${\overline T}\subset \overline G$ be the closure of a maximal torus $T\subset G.$ We prove that the group of all automorphisms of the variety $\overline T$ is the semi-direct product $N_G(T)\rtimes D,$ where $N_G(T)$ is the normalizer of $T$ in $G$ and $D$ is the group of all automorphisms of the Dynkin diagram, if $G\not= {\rm PSL}(2,\mathbb{C})$. Note that if $G = {\rm PSL}(2,\mathbb{C})$, then $\overline{T} = {\mathbb C}{\mathbb P}^1$ and so in this case $\text{Aut}(\overline T)= {\rm PSL}(2,\mathbb{C})$.

Related articles: Most relevant | Search more
arXiv:1506.09011 [math.AG] (Published 2015-06-30)
Automorphisms of $\overline{T}$
arXiv:2011.14613 [math.AG] (Published 2020-11-30)
On the $\mathbb{A}^1$-Euler characteristic of the variety of maximal tori in a reductive group
arXiv:math/0702556 [math.AG] (Published 2007-02-19)
Descent of line bundles to GIT quotients of flag varieties by maximal torus