{ "id": "1702.08364", "version": "v1", "published": "2017-02-27T16:42:53.000Z", "updated": "2017-02-27T16:42:53.000Z", "title": "The full automorphism group of $\\overline{T}$", "authors": [ "Indranil Biswas", "Subramaniam Senthamarai Kannan", "Donihakalu Shankar Nagaraj" ], "comment": "Final version", "categories": [ "math.AG", "math.RT" ], "abstract": "Let $\\overline G$ be the wonderful compactification of a simple affine algebraic group $G$ of adjoint type defined over $\\mathbb C.$ Let ${\\overline T}\\subset \\overline G$ be the closure of a maximal torus $T\\subset G.$ We prove that the group of all automorphisms of the variety $\\overline T$ is the semi-direct product $N_G(T)\\rtimes D,$ where $N_G(T)$ is the normalizer of $T$ in $G$ and $D$ is the group of all automorphisms of the Dynkin diagram, if $G\\not= {\\rm PSL}(2,\\mathbb{C})$. Note that if $G = {\\rm PSL}(2,\\mathbb{C})$, then $\\overline{T} = {\\mathbb C}{\\mathbb P}^1$ and so in this case $\\text{Aut}(\\overline T)= {\\rm PSL}(2,\\mathbb{C})$.", "revisions": [ { "version": "v1", "updated": "2017-02-27T16:42:53.000Z" } ], "analyses": { "subjects": [ "14L10", "14L30" ], "keywords": [ "full automorphism group", "simple affine algebraic group", "dynkin diagram", "adjoint type", "maximal torus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }