arXiv Analytics

Sign in

arXiv:1702.08216 [math.CA]AbstractReferencesReviewsResources

On higher-order discriminants

Vladimir Petrov Kostov

Published 2017-02-27Version 1

For the family of polynomials in one variable $P:=x^n+a_1x^{n-1}+\cdots +a_n$, $n\geq 4$, we consider its higher-order discriminant sets $\{ \tilde{D}_m=0\}$, where $\tilde{D}_m:=$Res$(P,P^{(m)})$, $m=2$, $\ldots$, $n-2$, and their projections in the spaces of the variables $a^k:=(a_1,\ldots ,a_{k-1},a_{k+1},\ldots ,a_n)$. Set $P^{(m)}:=\sum _{j=0}^{n-m}c_ja_jx^{n-m-j}$, $P_{m,k}:=c_kP-x^mP^{(m)}$. We show that Res$(\tilde{D}_m,\partial \tilde{D}_m/\partial a_k,a_k)= A_{m,k}B_{m,k}C_{m,k}^2$, where $A_{m,k}=a_n^{n-m-k}$, $B_{m,k}=$Res$(P_{m,k},P_{m,k}')$ if $1\leq k\leq n-m$ and $A_{m,k}=a_{n-m}^{n-k}$, $B_{m,k}=$Res$(P^{(m)},P^{(m+1)})$ if $n-m+1\leq k\leq n$. The equation $C_{m,k}=0$ defines the projection in the space of the variables $a^k$ of the closure of the set of values of $(a_1,\ldots ,a_n)$ for which $P$ and $P^{(m)}$ have two distinct roots in common. The polynomials $B_{m,k},C_{m,k}\in \mathbb{C}[a^k]$ are irreducible. The result is generalized to the case when $P^{(m)}$ is replaced by a polynomial $P_*:=\sum _{j=0}^{n-m}b_ja_jx^{n-m-j}$, $0\neq b_i\neq b_j\neq 0$ for $i\neq j$.

Related articles: Most relevant | Search more
arXiv:2401.12394 [math.CA] (Published 2024-01-22)
Roots of polynomials and tangents of circles
arXiv:2012.11458 [math.CA] (Published 2020-12-21)
Decoupling for fractal subsets of the parabola
arXiv:1509.01128 [math.CA] (Published 2015-09-03)
The Assouad dimensions of projections of planar sets