{ "id": "1702.08216", "version": "v1", "published": "2017-02-27T10:09:03.000Z", "updated": "2017-02-27T10:09:03.000Z", "title": "On higher-order discriminants", "authors": [ "Vladimir Petrov Kostov" ], "categories": [ "math.CA" ], "abstract": "For the family of polynomials in one variable $P:=x^n+a_1x^{n-1}+\\cdots +a_n$, $n\\geq 4$, we consider its higher-order discriminant sets $\\{ \\tilde{D}_m=0\\}$, where $\\tilde{D}_m:=$Res$(P,P^{(m)})$, $m=2$, $\\ldots$, $n-2$, and their projections in the spaces of the variables $a^k:=(a_1,\\ldots ,a_{k-1},a_{k+1},\\ldots ,a_n)$. Set $P^{(m)}:=\\sum _{j=0}^{n-m}c_ja_jx^{n-m-j}$, $P_{m,k}:=c_kP-x^mP^{(m)}$. We show that Res$(\\tilde{D}_m,\\partial \\tilde{D}_m/\\partial a_k,a_k)= A_{m,k}B_{m,k}C_{m,k}^2$, where $A_{m,k}=a_n^{n-m-k}$, $B_{m,k}=$Res$(P_{m,k},P_{m,k}')$ if $1\\leq k\\leq n-m$ and $A_{m,k}=a_{n-m}^{n-k}$, $B_{m,k}=$Res$(P^{(m)},P^{(m+1)})$ if $n-m+1\\leq k\\leq n$. The equation $C_{m,k}=0$ defines the projection in the space of the variables $a^k$ of the closure of the set of values of $(a_1,\\ldots ,a_n)$ for which $P$ and $P^{(m)}$ have two distinct roots in common. The polynomials $B_{m,k},C_{m,k}\\in \\mathbb{C}[a^k]$ are irreducible. The result is generalized to the case when $P^{(m)}$ is replaced by a polynomial $P_*:=\\sum _{j=0}^{n-m}b_ja_jx^{n-m-j}$, $0\\neq b_i\\neq b_j\\neq 0$ for $i\\neq j$.", "revisions": [ { "version": "v1", "updated": "2017-02-27T10:09:03.000Z" } ], "analyses": { "keywords": [ "polynomial", "higher-order discriminant sets", "projection", "distinct roots" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }