arXiv Analytics

Sign in

arXiv:1702.05886 [math.FA]AbstractReferencesReviewsResources

$L^p$-Analysis of the Hodge--Dirac operator associated with Witten Laplacians on complete Riemannian manifolds

Jan van Neerven, Rik Versendaal

Published 2017-02-20Version 1

We prove $R$-bisectoriality and boundedness of the $H^\infty$-functional calculus in $L^p$ for all $1<p<\infty$ for the Hodge-Dirac operator associated with Witten Laplacians on complete Riemannian manifolds with non-negative Bakry-Emery Ricci curvature on $k$-forms.

Related articles: Most relevant | Search more
arXiv:1502.01957 [math.FA] (Published 2015-02-06)
Functional calculus for $C_0$-semigroups using infinite-dimensional systems theory
arXiv:math/0601645 [math.FA] (Published 2006-01-26)
$H^{\infty}$ functional calculus and square functions on noncommutative $L^p$-spaces
arXiv:1211.7247 [math.FA] (Published 2012-11-30)
Functional calculus for diagonalizable matrices