arXiv:math/0601645 [math.FA]AbstractReferencesReviewsResources
$H^{\infty}$ functional calculus and square functions on noncommutative $L^p$-spaces
Marius Junge, Christian Le Merdy, Quanhua Xu
Published 2006-01-26Version 1
In this work we investigate semigroups of operators acting on noncommutative $L^p$-spaces. We introduce noncommutative square functions and their connection to sectoriality, variants of Rademacher sectoriality, and $H^\infty$ functional calculus. We discuss several examples of noncommutative diffusion semigroups. This includes Schur multipliers, $q$-Ornstein-Uhlenbeck semigroups, and the noncommutative Poisson semigroup on free groups.
Comments: 118 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:2412.02326 [math.FA] (Published 2024-12-03)
A sharp bound for the functional calculus of $ρ$-contractions
arXiv:2406.03297 [math.FA] (Published 2024-06-05)
Functional calculus on weighted Sobolev spaces for the Laplacian on the half-space
arXiv:1211.7247 [math.FA] (Published 2012-11-30)
Functional calculus for diagonalizable matrices