arXiv Analytics

Sign in

arXiv:1702.03486 [math.CA]AbstractReferencesReviewsResources

Norm of the Hausdorff operator on the real Hardy space $H^1(\mathbb R)$

Ha Duy Hung, Luong Dang Ky, Thai Thuan Quang

Published 2017-02-12Version 1

Let $\varphi$ be a nonnegative integrable function on $(0,\infty)$. It is well-known that the Hausdorff operator $\mathcal H_\varphi$ generated by $\varphi$ is bounded on the real Hardy space $H^1(\mathbb R)$. The aim of this paper is to give the exact norm of $\mathcal H_\varphi$. More precisely, we prove that $$\|\mathcal H_\varphi\|_{H^1(\mathbb R)\to H^1(\mathbb R)}= \int_0^\infty \varphi(t)dt.$$

Comments: Complex Anal. Oper. Theory (to appear)
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:1703.01015 [math.CA] (Published 2017-03-03)
Hausdorff operators on holomorphic Hardy spaces and applications
arXiv:2006.08139 [math.CA] (Published 2020-06-15)
The unboundedness of Hausdorff operators on Quasi-Banach spaces
arXiv:2012.02872 [math.CA] (Published 2020-12-04)
Notes on $H^{\log} $: structural properties, dyadic variants, and bilinear $H^1$-$BMO$ mappings