{ "id": "1702.03486", "version": "v1", "published": "2017-02-12T04:17:28.000Z", "updated": "2017-02-12T04:17:28.000Z", "title": "Norm of the Hausdorff operator on the real Hardy space $H^1(\\mathbb R)$", "authors": [ "Ha Duy Hung", "Luong Dang Ky", "Thai Thuan Quang" ], "comment": "Complex Anal. Oper. Theory (to appear)", "categories": [ "math.CA" ], "abstract": "Let $\\varphi$ be a nonnegative integrable function on $(0,\\infty)$. It is well-known that the Hausdorff operator $\\mathcal H_\\varphi$ generated by $\\varphi$ is bounded on the real Hardy space $H^1(\\mathbb R)$. The aim of this paper is to give the exact norm of $\\mathcal H_\\varphi$. More precisely, we prove that $$\\|\\mathcal H_\\varphi\\|_{H^1(\\mathbb R)\\to H^1(\\mathbb R)}= \\int_0^\\infty \\varphi(t)dt.$$", "revisions": [ { "version": "v1", "updated": "2017-02-12T04:17:28.000Z" } ], "analyses": { "keywords": [ "real hardy space", "hausdorff operator", "exact norm", "nonnegative integrable function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }