arXiv Analytics

Sign in

arXiv:1701.03348 [math.AP]AbstractReferencesReviewsResources

Existence, Uniqueness and Structure of Second Order absolute minimisers

Nikos Katzourakis, Roger Moser

Published 2017-01-12Version 1

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded open $C^{1,1}$ set. In this paper we prove the existence of a unique second order absolute minimiser $u_\infty$ of the functional \[ \mathrm{E}_\infty (u,\mathcal{O})\, :=\, \| \mathrm{F}(\cdot, \Delta u) \|_{L^\infty( \mathcal{O} )}, \ \ \ \mathcal{O} \subseteq \Omega \text{ measurable}, \] with prescribed boundary conditions for $u$ and $\mathrm{D} u$ on $\partial \Omega$ and under natural assumptions on $\mathrm{F}$. We also show that $u_\infty$ is partially smooth and there exists a harmonic function $f_\infty \in L^1(\Omega)$ such that \[ \mathrm{F}(x, \Delta u_\infty(x)) \, =\, e_\infty\, \mathrm{sgn}\big(f_\infty(x)\big) \] for all $x \in \{f_\infty \neq 0\}$, where $e_\infty$ is the infimum of the global energy.

Related articles: Most relevant | Search more
arXiv:2002.04677 [math.AP] (Published 2020-02-11)
On a Theorem of Wolff Revisited
arXiv:2212.14757 [math.AP] (Published 2022-12-30)
Local Regularity of very weak $s$-harmonic functions
arXiv:1411.1443 [math.AP] (Published 2014-11-05)
Boundary Integrals and Approximations of Harmonic Functions