{ "id": "1701.03348", "version": "v1", "published": "2017-01-12T14:27:04.000Z", "updated": "2017-01-12T14:27:04.000Z", "title": "Existence, Uniqueness and Structure of Second Order absolute minimisers", "authors": [ "Nikos Katzourakis", "Roger Moser" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "Let $\\Omega \\subseteq \\mathbb{R}^n$ be a bounded open $C^{1,1}$ set. In this paper we prove the existence of a unique second order absolute minimiser $u_\\infty$ of the functional \\[ \\mathrm{E}_\\infty (u,\\mathcal{O})\\, :=\\, \\| \\mathrm{F}(\\cdot, \\Delta u) \\|_{L^\\infty( \\mathcal{O} )}, \\ \\ \\ \\mathcal{O} \\subseteq \\Omega \\text{ measurable}, \\] with prescribed boundary conditions for $u$ and $\\mathrm{D} u$ on $\\partial \\Omega$ and under natural assumptions on $\\mathrm{F}$. We also show that $u_\\infty$ is partially smooth and there exists a harmonic function $f_\\infty \\in L^1(\\Omega)$ such that \\[ \\mathrm{F}(x, \\Delta u_\\infty(x)) \\, =\\, e_\\infty\\, \\mathrm{sgn}\\big(f_\\infty(x)\\big) \\] for all $x \\in \\{f_\\infty \\neq 0\\}$, where $e_\\infty$ is the infimum of the global energy.", "revisions": [ { "version": "v1", "updated": "2017-01-12T14:27:04.000Z" } ], "analyses": { "keywords": [ "unique second order absolute minimiser", "uniqueness", "prescribed boundary conditions", "natural assumptions", "harmonic function" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }