arXiv:1612.09229 [math.PR]AbstractReferencesReviewsResources
An Erdös-Révész type law of the iterated logarithm for reflected Gaussian processes
Published 2016-12-29Version 1
Let $B_H=\{B_H(t):t\in\mathbb R\}$ be the fractional Brownian motion with Hurst parameter $H\in(0,1)$. For the stationary storage process $Q_{B_H}(t)=\sup_{-\infty<s\le t}(B_H(t)-B_H(s)-(t-s))$, we provide a tractable criterion for assessing whether, for any positive, non-decreasing function $f$, $\mathbb P(\mathscr E_f)=\mathbb P(Q_{B_H}(t) > f(t)\, \text{ i.o.})$ equals 0 or 1. Using this criterion we find that, for a family of functions $f_p(t)$, such that $z_p(t)=\mathbb P(\sup_{s\in[0,f_p(t)]}Q_{B_H}(s)>f_p(t))/f_p(t)=O((t\log^{1-p} t)^{-1})$, $\mathbb P(\mathscr E_{f_p})= 1_{\{p\ge 0\}}$. Consequently, with $\xi_p (t) = \sup\{s:0\le s\le t, Q_{B_H}(s)\ge f_p(s)\}$, for $p\ge 0$, $\lim_{t\to\infty}\xi_p(t)=\infty$ and $\limsup_{t\to\infty}(\xi_p(t)-t)=0$ a.s. Complementary, we prove an Erd\"os-R\'ev\'esz type law of the iterated logarithm lower bound on $\xi_p(t)$, i.e., $\liminf_{t\to\infty}(\xi_p(t)-t)/h_p(t) = -1$ a.s., $p>1$; $\liminf_{t\to\infty}\log(\xi_p(t)/t)/(h_p(t)/t) = -1$ a.s., $p\in(0,1]$, where $h_p(t)=(1/z_p(t))p\log\log t$.