{ "id": "1612.09229", "version": "v1", "published": "2016-12-29T18:07:58.000Z", "updated": "2016-12-29T18:07:58.000Z", "title": "An Erdös-Révész type law of the iterated logarithm for reflected Gaussian processes", "authors": [ "K. Dębicki", "K. M. Kosiński" ], "comment": "arXiv admin note: text overlap with arXiv:1606.01502", "categories": [ "math.PR" ], "abstract": "Let $B_H=\\{B_H(t):t\\in\\mathbb R\\}$ be the fractional Brownian motion with Hurst parameter $H\\in(0,1)$. For the stationary storage process $Q_{B_H}(t)=\\sup_{-\\infty f(t)\\, \\text{ i.o.})$ equals 0 or 1. Using this criterion we find that, for a family of functions $f_p(t)$, such that $z_p(t)=\\mathbb P(\\sup_{s\\in[0,f_p(t)]}Q_{B_H}(s)>f_p(t))/f_p(t)=O((t\\log^{1-p} t)^{-1})$, $\\mathbb P(\\mathscr E_{f_p})= 1_{\\{p\\ge 0\\}}$. Consequently, with $\\xi_p (t) = \\sup\\{s:0\\le s\\le t, Q_{B_H}(s)\\ge f_p(s)\\}$, for $p\\ge 0$, $\\lim_{t\\to\\infty}\\xi_p(t)=\\infty$ and $\\limsup_{t\\to\\infty}(\\xi_p(t)-t)=0$ a.s. Complementary, we prove an Erd\\\"os-R\\'ev\\'esz type law of the iterated logarithm lower bound on $\\xi_p(t)$, i.e., $\\liminf_{t\\to\\infty}(\\xi_p(t)-t)/h_p(t) = -1$ a.s., $p>1$; $\\liminf_{t\\to\\infty}\\log(\\xi_p(t)/t)/(h_p(t)/t) = -1$ a.s., $p\\in(0,1]$, where $h_p(t)=(1/z_p(t))p\\log\\log t$.", "revisions": [ { "version": "v1", "updated": "2016-12-29T18:07:58.000Z" } ], "analyses": { "subjects": [ "60F15", "60G70", "60G22" ], "keywords": [ "erdös-révész type law", "reflected gaussian processes", "stationary storage process", "fractional brownian motion", "iterated logarithm lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }