arXiv:1612.08575 [math.PR]AbstractReferencesReviewsResources
Maximum of the Riemann zeta function on a short interval of the critical line
Louis-Pierre Arguin, David Belius, Paul Bourgade, Maksym Radziwiłł, Kannan Soundararajan
Published 2016-12-27Version 1
We prove the leading order of a conjecture by Fyodorov, Hiary and Keating, about the maximum of the Riemann zeta function on random intervals along the critical line. More precisely, if $t$ is uniformly distributed in $[T,2T]$, then $$ \max_{|t-u|\leq 1}\log\left|\zeta\left(\frac{1}{2}+\mathrm{i} u\right)\right|=(1+{\mathrm o}(1))\log\log T $$ with probability converging to 1 as $T\to\infty$.
Comments: 24 pages
Related articles: Most relevant | Search more
arXiv:1706.08462 [math.PR] (Published 2017-06-26)
Is the Riemann zeta function in a short interval a 1-RSB spin glass ?
arXiv:2103.04817 [math.PR] (Published 2021-03-08)
Maxima of a Random Model of the Riemann Zeta Function over Intervals of Varying Length
arXiv:1609.00027 [math.PR] (Published 2016-08-31)
The Riemann zeta function and Gaussian multiplicative chaos: statistics on the critical line