{ "id": "1612.08575", "version": "v1", "published": "2016-12-27T11:14:49.000Z", "updated": "2016-12-27T11:14:49.000Z", "title": "Maximum of the Riemann zeta function on a short interval of the critical line", "authors": [ "Louis-Pierre Arguin", "David Belius", "Paul Bourgade", "Maksym Radziwiłł", "Kannan Soundararajan" ], "comment": "24 pages", "categories": [ "math.PR", "math.NT" ], "abstract": "We prove the leading order of a conjecture by Fyodorov, Hiary and Keating, about the maximum of the Riemann zeta function on random intervals along the critical line. More precisely, if $t$ is uniformly distributed in $[T,2T]$, then $$ \\max_{|t-u|\\leq 1}\\log\\left|\\zeta\\left(\\frac{1}{2}+\\mathrm{i} u\\right)\\right|=(1+{\\mathrm o}(1))\\log\\log T $$ with probability converging to 1 as $T\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2016-12-27T11:14:49.000Z" } ], "analyses": { "subjects": [ "60G70", "11M06" ], "keywords": [ "riemann zeta function", "critical line", "short interval", "random intervals", "leading order" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }