arXiv Analytics

Sign in

arXiv:1612.02102 [math.AP]AbstractReferencesReviewsResources

Multiplicity of nodal solutions to the Yamabe problem

Mónica Clapp, Juan Carlos Fernández

Published 2016-12-07Version 1

Given a compact Riemannian manifold $(M,g)$ without boundary of dimension $m\geq 3$ and under some symmetry assumptions, we establish existence of one positive and multiple nodal solutions to the Yamabe-type equation $$-div_{g}(a\nabla u)+bu=c|u|^{2^{\ast}-2}u\quad on\ M$$, where $a,b,c\in C^{\infty}(M)$, $a$ and $c$ are positive, $-div_{g}(a\nabla)+b$ is coercive, and $2^{\ast}=\frac{2m}{m-2}$ is the critical Sobolev exponent. In particular, if $R_{g}$ denotes the scalar curvature of $(M,g)$, we give conditions which guarantee that the Yamabe problem $$\Delta_{g}u+\frac{m-2}{4(m-1} R_{g}u=\kappa u^{2^{\ast}-2}\quad on\ M$$ admits a prescribed number of nodal solutions.

Related articles: Most relevant | Search more
arXiv:2209.00069 [math.AP] (Published 2022-08-31)
Frational p-Laplacian on Compact Riemannian Manifold
arXiv:0804.1717 [math.AP] (Published 2008-04-10, updated 2009-06-25)
The Yamabe problem with singularities
arXiv:2003.13050 [math.AP] (Published 2020-03-29)
Quasi-linear elliptic equations with data in $L^{1}$ on a compact Riemannian manifold