arXiv:1612.02102 [math.AP]AbstractReferencesReviewsResources
Multiplicity of nodal solutions to the Yamabe problem
Mónica Clapp, Juan Carlos Fernández
Published 2016-12-07Version 1
Given a compact Riemannian manifold $(M,g)$ without boundary of dimension $m\geq 3$ and under some symmetry assumptions, we establish existence of one positive and multiple nodal solutions to the Yamabe-type equation $$-div_{g}(a\nabla u)+bu=c|u|^{2^{\ast}-2}u\quad on\ M$$, where $a,b,c\in C^{\infty}(M)$, $a$ and $c$ are positive, $-div_{g}(a\nabla)+b$ is coercive, and $2^{\ast}=\frac{2m}{m-2}$ is the critical Sobolev exponent. In particular, if $R_{g}$ denotes the scalar curvature of $(M,g)$, we give conditions which guarantee that the Yamabe problem $$\Delta_{g}u+\frac{m-2}{4(m-1} R_{g}u=\kappa u^{2^{\ast}-2}\quad on\ M$$ admits a prescribed number of nodal solutions.