{ "id": "1612.02102", "version": "v1", "published": "2016-12-07T02:46:11.000Z", "updated": "2016-12-07T02:46:11.000Z", "title": "Multiplicity of nodal solutions to the Yamabe problem", "authors": [ "Mónica Clapp", "Juan Carlos Fernández" ], "categories": [ "math.AP" ], "abstract": "Given a compact Riemannian manifold $(M,g)$ without boundary of dimension $m\\geq 3$ and under some symmetry assumptions, we establish existence of one positive and multiple nodal solutions to the Yamabe-type equation $$-div_{g}(a\\nabla u)+bu=c|u|^{2^{\\ast}-2}u\\quad on\\ M$$, where $a,b,c\\in C^{\\infty}(M)$, $a$ and $c$ are positive, $-div_{g}(a\\nabla)+b$ is coercive, and $2^{\\ast}=\\frac{2m}{m-2}$ is the critical Sobolev exponent. In particular, if $R_{g}$ denotes the scalar curvature of $(M,g)$, we give conditions which guarantee that the Yamabe problem $$\\Delta_{g}u+\\frac{m-2}{4(m-1} R_{g}u=\\kappa u^{2^{\\ast}-2}\\quad on\\ M$$ admits a prescribed number of nodal solutions.", "revisions": [ { "version": "v1", "updated": "2016-12-07T02:46:11.000Z" } ], "analyses": { "subjects": [ "35J61", "58J05", "35B06", "35B33", "35B44" ], "keywords": [ "yamabe problem", "multiplicity", "compact riemannian manifold", "multiple nodal solutions", "symmetry assumptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }