arXiv Analytics

Sign in

arXiv:1611.08716 [math.RT]AbstractReferencesReviewsResources

Topological classification of systems of bilinear and sesquilinear forms

Carlos M. da Fonseca, Vyacheslav Futorny, Tetiana Rybalkina, Vladimir V. Sergeichuk

Published 2016-11-26Version 1

Let $\cal A$ and $\cal B$ be two systems consisting of the same vector spaces $\mathbb C^{n_1},\dots,\mathbb C^{n_t}$ and bilinear or sesquilinear forms $A_i,B_i:\mathbb C^{n_{k(i)}}\times\mathbb C^{n_{l(i)}}\to\mathbb C$, for $i=1,\dots,s$. We prove that $\cal A$ is transformed to $\cal B$ by homeomorphisms within $\mathbb C^{n_1},\dots,\mathbb C^{n_t}$ if and only if $\cal A$ is transformed to $\cal B$ by linear bijections within $\mathbb C^{n_1},\dots,\mathbb C^{n_t}$.

Comments: 5 pages
Journal: Linear Algebra Appl. 515 (2017) 1-5
Categories: math.RT
Subjects: 15A21, 37C15
Related articles: Most relevant | Search more
arXiv:1604.05403 [math.RT] (Published 2016-04-19)
Topological classification of sesquilinear forms: reduction to the nonsingular case
arXiv:0709.2408 [math.RT] (Published 2007-09-15, updated 2007-10-03)
Canonical matrices of bilinear and sesquilinear forms
arXiv:0710.0928 [math.RT] (Published 2007-10-04)
Classification of sesquilinear forms with the first argument on a subspace or a factor space