{ "id": "1611.08716", "version": "v1", "published": "2016-11-26T15:48:51.000Z", "updated": "2016-11-26T15:48:51.000Z", "title": "Topological classification of systems of bilinear and sesquilinear forms", "authors": [ "Carlos M. da Fonseca", "Vyacheslav Futorny", "Tetiana Rybalkina", "Vladimir V. Sergeichuk" ], "comment": "5 pages", "journal": "Linear Algebra Appl. 515 (2017) 1-5", "doi": "10.1016/j.laa.2016.11.012", "categories": [ "math.RT" ], "abstract": "Let $\\cal A$ and $\\cal B$ be two systems consisting of the same vector spaces $\\mathbb C^{n_1},\\dots,\\mathbb C^{n_t}$ and bilinear or sesquilinear forms $A_i,B_i:\\mathbb C^{n_{k(i)}}\\times\\mathbb C^{n_{l(i)}}\\to\\mathbb C$, for $i=1,\\dots,s$. We prove that $\\cal A$ is transformed to $\\cal B$ by homeomorphisms within $\\mathbb C^{n_1},\\dots,\\mathbb C^{n_t}$ if and only if $\\cal A$ is transformed to $\\cal B$ by linear bijections within $\\mathbb C^{n_1},\\dots,\\mathbb C^{n_t}$.", "revisions": [ { "version": "v1", "updated": "2016-11-26T15:48:51.000Z" } ], "analyses": { "subjects": [ "15A21", "37C15" ], "keywords": [ "sesquilinear forms", "topological classification", "linear bijections" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }