arXiv:1611.08180 [math.NT]AbstractReferencesReviewsResources
Sums of the digits in bases 2 and 3
Jean-Marc Deshouillers, Laurent Habsieger, Shanta Laishram, Bernard Landreau
Published 2016-11-24Version 1
Let b $\ge$ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N , one has Card{n $\le$ N : |s 3 (n) -- s 2 (n)| $\le$ 0.1457205 log n} \textgreater{} N 0.970359. The proof only uses the separate (or marginal) distributions of the values of s 2 (n) and s 3 (n).
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2101.04418 [math.NT] (Published 2021-01-12)
Correlations of sieve weights and distributions of zeros
arXiv:2206.00072 [math.NT] (Published 2022-05-31)
Distributions of Matrices over $\mathbb{F}_q[x]$
arXiv:2210.07579 [math.NT] (Published 2022-10-14)
Summation from the viewpoint of distributions