{ "id": "1611.08180", "version": "v1", "published": "2016-11-24T13:40:26.000Z", "updated": "2016-11-24T13:40:26.000Z", "title": "Sums of the digits in bases 2 and 3", "authors": [ "Jean-Marc Deshouillers", "Laurent Habsieger", "Shanta Laishram", "Bernard Landreau" ], "categories": [ "math.NT" ], "abstract": "Let b $\\ge$ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N , one has Card{n $\\le$ N : |s 3 (n) -- s 2 (n)| $\\le$ 0.1457205 log n} \\textgreater{} N 0.970359. The proof only uses the separate (or marginal) distributions of the values of s 2 (n) and s 3 (n).", "revisions": [ { "version": "v1", "updated": "2016-11-24T13:40:26.000Z" } ], "analyses": { "keywords": [ "representation", "sufficiently large", "distributions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }