arXiv Analytics

Sign in

arXiv:1610.03970 [math.AT]AbstractReferencesReviewsResources

The bv algebra in string topology of classifying spaces

Katsuhiko Kuribayashi, Luc Menichi

Published 2016-10-13Version 1

For almost any compact connected Lie group $G$ and any field $\mathbb{F}\_p$, we compute the Batalin-Vilkoviskyalgebra $H^{*+\text{dim }G}(LBG;\mathbb{F}\_p)$ on the loop cohomology of the classifying space introduced byChataur and the second author.In particular, if $p$ is odd or $p=0$, this Batalin-Vilkovisky algebra is isomorphicto the Hochschild cohomology $HH^*(H\_*(G),H\_*(G))$. Over $\mathbb{F}\_2$, such isomorphism of Batalin-Vilkovisky algebrasdoes not hold when $G=SO(3)$ or $G=G\_2$.

Related articles: Most relevant | Search more
arXiv:0801.0174 [math.AT] (Published 2007-12-31, updated 2009-06-01)
String topology of classifying spaces
arXiv:1308.6169 [math.AT] (Published 2013-08-28, updated 2015-04-27)
On string topology of classifying spaces
arXiv:1906.04499 [math.AT] (Published 2019-06-11)
Nilpotent elements in the cohomology of the classifying space of a connected Lie group