arXiv:1610.03970 [math.AT]AbstractReferencesReviewsResources
The bv algebra in string topology of classifying spaces
Katsuhiko Kuribayashi, Luc Menichi
Published 2016-10-13Version 1
For almost any compact connected Lie group $G$ and any field $\mathbb{F}\_p$, we compute the Batalin-Vilkoviskyalgebra $H^{*+\text{dim }G}(LBG;\mathbb{F}\_p)$ on the loop cohomology of the classifying space introduced byChataur and the second author.In particular, if $p$ is odd or $p=0$, this Batalin-Vilkovisky algebra is isomorphicto the Hochschild cohomology $HH^*(H\_*(G),H\_*(G))$. Over $\mathbb{F}\_2$, such isomorphism of Batalin-Vilkovisky algebrasdoes not hold when $G=SO(3)$ or $G=G\_2$.
Related articles: Most relevant | Search more
String topology of classifying spaces
On string topology of classifying spaces
arXiv:1906.04499 [math.AT] (Published 2019-06-11)
Nilpotent elements in the cohomology of the classifying space of a connected Lie group